Table II. Comparison of the Rates of Solvolysis of 9-Pentacyclo[4.3.0.0 2.4. $0^{3.8}, 0^{5.7}$]nonyl p-Nitrobenzoates with the Corresponding 7-Norbornyl Derivatives

	Relative Rate	
	$\mathbf{2}^{a}$ (taken as unity)	$\mathbf{1}$
p Substituent	1.00^{b}	159
$p-\mathrm{CH}_{3} \mathrm{O}$	1.00^{b}	5.85×10^{3}
$p-\mathrm{CF}_{3}$	1.00^{b}	4.90×10^{6}
$3,5-\left(\mathrm{CF}_{3}\right)_{2}$	1.00^{b}	3.47×10^{8}
CH_{3}	1.00^{b}	9.3×10^{7}
H	1.00^{c}	9.8×10^{13}

${ }^{a}$ Reference 8, 9. ${ }^{b}$ Corrected from 70\% dioxane to 80% acetone. ${ }^{9}$ c Corrected from tosylate in acetic acid to p-nitrobenzoate in 50% acetone. ${ }^{9}$

volysis of 7 -norbornenyl derivatives (7) where π-participation is significant, ${ }^{8}$ and much larger than ρ^{+}for 7 -norbornyl (8), Hence the $\pi \sigma$-participation from the cyclopropane ring is a linear function of the electron demand of the incipient carbonium ion center.

The rates of solvolysis of 1 are compared with the 7 -norbornyl p-nitrobenzoates (2) ${ }^{8,9}$ and are listed in Table II. The relative rate data reveal that with increasing electron demand at the cationic center the rates of solvolysis of the pentacyclic derivatives (1) increase markedly relative to the rates of the corresponding 7 -norbornyl derivatives (2).

It is interesting to note that very low 9-methyl/9-hydrogen (127) and 9-phenyl/9-methyl (14) ratios are evident in this system (Table I). These values should be compared with the very large methyl/hydrogen $\left(1.23 \times 10^{8}\right)^{10}$ and phenyl/methyl ratios $\left(2.3 \times 10^{5}\right)^{11}$ observed in the solvolysis of the parent 7 -norbornyl derivatives. The low methyl/hydrogen and phenyl/methyl ratios can be attributed to the fact that the cation is so stabilized by $\pi \sigma$-participation that it makes relatively little demand upon substituents for further stabilization. Similar diminished methyl/hydrogen (420) ${ }^{12}$ and phenyl/methyl ratios (9.5) ${ }^{11}$ are also observed in the solvolysis of 7 -norbornenyl derivatives (7) where the solvolysis proceeds through π-participation.

The major product of solvolysis of 9-phenyl-9-pentacyclo[4,3.0, $\left.0^{2,4} .0^{3,8}, 0^{5,7}\right]$ nonyl p-nitrobenzoate ($1, \mathrm{R}=\mathrm{Ph}$) in 80% aqueous acetone at $75^{\circ} \mathrm{C}$ after ten half-lives is the unrearranged tertiary alcohol (95%). The solvolysis also furnished a minor amount, 5%, of the secondary alcohol.

In conclusion, both the application of the tool of increasing electron demand and the low methyl/hydrogen and phenyl/ methyl ratios observed in the solvolysis of 1 unambiguously support the earlier conclusion that the solvolysis of this system proceeds with carbon ($\pi \sigma$)-participation. However, it should be pointed out that the application of the same criteria to $2-$ norbornyl fails to reveal such participation under solvolytic conditions. ${ }^{13,14}$

References and Notes

(1) For leading references, see H. C. Brown et al., J. Am. Chem. Soc., 97, 7442, 7449,7454 (1975); H. C. Brown, '"The Nonclassical lon Problem"', Plenum, New York, N. Y., 1977.
(2) R. M. Coates and J. L. Kirkpatrick, J. Am. Chem. Soc., 92, 4883 (1970).
(3) R. M. Coates and E. R. Fretz, J. Am. Chem. Soc., 97, 2538 (1975).
(4) R. E. Leone, J. C. Barborak, and P. v. R. Schleyer, "Carbonium lons', Vol. IV, G. A. Olah and P. v. R. Schleyer, Ed., Wiley-Interscience, New York, N.Y., 1973.
(5) We are grateful to Professor R. M. Coates for a sample of the pentacyclic ketone and the phenyl and the secondary p-nitrobenzoates.
(6) H. C. Brown and E. N. Peters, J. Am. Chem. Soc., 97, 1927 (1975).
(7) Y. Okamoto and H. C. Brown, J. Org. Chem., 22, 485 (1957)
(8) P. G. Gassman and A. F. Fentiman, Jr., J. Am. Chem. Soc., 92, 2549 (1970).
(9) The rates of solvolysis of the 7 -norbornyl p-nitrobenzoates in 70% dioxane 8 were converted to rates of p-nitrobenzoates in 80% acetone by the factor of 0.206 and the rates of tosylates in acetic acid to p-nitrobenzoates in 80% acetone by multiplying the rates of tosylates by a factor of 3.27×10^{-11}. See E. N. Peters, J. Am. Chem. Soc., 98, 5627 (1976)
(10) P. G. Gassman and J. M. Pascone, J. Am. Chem. Soc., 95, 7801 (1973).
(11) The rate of solvolysis of 7-phenylnorbornyl p-nitrobenzoate in 70% dioxane was converted to the rate of tosylate in acetic acid by multiplying by a factor of $6.3 \times 10^{9 .}$. For methyl/hydrogen and phenyl/hydrogen ratios, see also R. M. Coates and E. R. Fretz, J. Am. Chem. Soc., preceding paper in this issue.
(12) R. K. Lustgarten, J. Lhomme, and S. Winstein, J. Org. Chem., 37, 1075 (1972).
(13) H. C. Brown, M. Ravindranathan, K. Takeuchi, and E. N. Peters, J. Am. Chem. Soc., 97, 2899 (1975).
(14) H. C. Brown and M.-H. Rei, J. Am. Chem. Soc., 86, 5008 (1964).
(15) Postdoctoral research associate on a grant supplied by Exxon Research and Engineering Company.

Herbert C. Brown,* M, Ravindranathan ${ }^{15}$
Richard B. Wetherill Laboratory, Purdue University West Lafayette, Indiana 47907
Received August 3, 1976

Reduction of Excited Singlet State Acetone by 2-Propanol

Sir:
While the intermediacy of the $n \pi^{*}$ triplet states (T_{1}) of alkanones in their photoreductions by hydrogen donors is well established, less is known about the reactivities of the corresponding $n \pi^{*}$ singlet states $\left(\mathrm{S}_{1}\right)$. Theory ${ }^{1,2}$ predicts similar reactivities for S_{1} and T_{1}, in keeping with the quenching of adamantanone fluorescence by hydrogen donors. ${ }^{3}$ The S_{1} reaction may be less efficient, however, since ground state educts and radical pair product lie on a common energy hypersurface, and return to the ground state can compete with radical pair formation. ${ }^{1,2}$ Wagner's finding of no ${ }^{4}$ or only little ${ }^{5}$ 2-propanol formation during reaction of excited acetone with tributylstannane under conditions where only S_{1} should react may point to a low efficiency of the S_{1} reaction. However, this explanation conflicts with the unit quantum yield of 2-propanol formation under conditions where both S_{1} and T_{1} states of acetone react with the stannane. ${ }^{4,5}$

Extending our studies ${ }^{6}$ on the acetone/2-propanol photosystem we have now observed the formation of the photoreduction product pinacol from a singlet reaction of excited acetone, and confirm that S_{1} and T_{1} states are about equally reactive towards 2-propanol.

Samples ($560 \mu \mathrm{l}$) of three different reaction mixtures consisting of (a) 5 M 2 -propanol plus 5 M 2 -propanol- d_{6} in di-tert-butyl peroxide, (b) 1 M acetone plus 10 M 2 -propanol- d_{6}

Table I, Yields of Pinacols

System	$\begin{gathered} \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}(5 \mathrm{M}) / \\ \left(\mathrm{CD}_{3}\right)_{2} \mathrm{CHOH}(5 \mathrm{M}) \\ \text { in DTBPa } \end{gathered}$	$\begin{gathered} \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(1 \mathrm{M}) / \\ \left(\mathrm{CD}_{3}\right)_{2} \mathrm{CHOH}(10 \mathrm{M}) \\ \text { in } \mathrm{CH}_{3} \mathrm{CN} \end{gathered}$	$\begin{gathered} \left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}(1 \mathrm{M}) / \\ \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}(10 \mathrm{M}) \\ \text { in } \mathrm{CH}_{3} \mathrm{CN} \end{gathered}$
$\left[\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{H}}\right]^{b}$	6.72	4.82	6.85
$\left[\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{D}}\right]^{b}$	12.51	11.84	14.49
$\left[\mathrm{R}_{\mathrm{D}}-\mathrm{R}_{\mathrm{D}}\right]^{b}$	5,87	5.99	6.00
$\left[\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{D}}\right]_{\mathrm{C}}{ }^{c}$	-0.08	1.03	1.64
$\underline{\left[\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{D}}\right]^{2} /\left[\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{H}}\right]\left[\mathrm{R}_{\mathrm{D}}-\mathrm{R}_{\mathrm{D}}\right]}$	3.97	4.86	5.11

${ }^{a}$ Di-tert-butyl peroxide. ${ }^{b}$ Absolute concentrations in $10^{-3} \mathbf{M}, \pm 5 \%$, relative concentrations $\pm 1 \%$, result of two independent runs and more
than two GLC analysis each. ${ }^{c}$ Excess pinacol $\left[R_{H}-R_{D}\right]_{C}=\left[R_{H}-R_{D}\right]-\left[R_{H}-R_{H}\right]-\left[R_{D}-R_{D}\right]$.
in acetonitrile, (c) 1 M acetone- d_{6} plus 10 M 2 -propanol in acetonitrile were exposed for 5 min at $(26 \pm 1)^{\circ} \mathrm{C}$ in septum closed NMR tubes to the filtered light of a Philips SP 1000-W lamp 7 ($295<\lambda<360 \mathrm{~nm}$, absorbed flux ca, 10^{17} quanta $^{-1}$). The yields of the three pinacols $\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{H}}, \mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{D}}$, and $\mathrm{R}_{\mathrm{D}}-\mathrm{R}_{\mathrm{D}}$ $\left(\mathrm{R}_{\mathrm{H}}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COH}, \mathrm{R}_{\mathrm{D}}=\left(\mathrm{CD}_{3}\right)_{2} \mathrm{COH}\right)$ were then determined by quantitative GLC. ${ }^{8}$ As evident from Table I, for the photoreduction systems the yield of $\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{D}}$ exceeds the sum of the yields of $R_{H}-R_{H}$ and $R_{D}-R_{D}$ by about 10% whereas no excess $\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{D}}$ is found in the peroxide/2-propanol/2-propa-nol- d_{6} mixture.

To analyze this finding we first consider the peroxide system, Here R_{H} and R_{D} are generated independently from each other by reaction of primary tert-butoxy radicals with the propanols. They terminate by combination (rate constants $k_{\mathrm{HH}}, k_{\mathrm{HD}}$, and k_{DD}) to the pinacols $\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{H}}, \mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{D}}$, and $\mathrm{R}_{\mathrm{D}}-\mathrm{R}_{\mathrm{D}}$ and by disproportionation to acetones and 2-propanols (in part via the acetone enols). ${ }^{6}$ The ratio of pinacol yields $\left[R_{H}-R_{D}\right]^{2} /$ $\left[R_{H}-R_{H}\right] \cdot\left[R_{D}-R_{D}\right]$ is given by

$$
\begin{equation*}
\frac{\left[\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{D}}\right]^{2}}{\left[\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{H}}\right]\left[\mathrm{R}_{\mathrm{D}}-\mathrm{R}_{\mathrm{D}}\right]}=\frac{k_{\mathrm{HD}}{ }^{2}}{k_{\mathrm{HH}} k_{\mathrm{DD}}} \frac{\left(\int \mathrm{R}_{\mathrm{H}} \mathrm{R}_{\mathrm{D}} \mathrm{~d} t\right)^{2}}{\int \mathrm{R}_{\mathrm{H}}^{2} \mathrm{~d} t \cdot \int \mathrm{R}_{\mathrm{D}}^{2} \mathrm{~d} t} \tag{1}
\end{equation*}
$$

where the integrations extend over the reaction period. Now, since ${ }^{9}$

$$
\begin{equation*}
\left(\int \mathrm{R}_{\mathrm{H}} \mathrm{R}_{\mathrm{D}} \mathrm{~d} t\right)^{2} \leq \int \mathrm{R}_{\mathrm{H}}{ }^{2} \mathrm{~d} t \cdot \int \mathrm{R}_{\mathrm{D}}^{2} \mathrm{~d} t \tag{2}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{\left[\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{D}}\right]^{2}}{\left[\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{H}}\right]\left[\mathrm{R}_{\mathrm{D}}-\mathrm{R}_{\mathrm{D}}\right]} \leq \frac{k_{\mathrm{HD}}{ }^{2}}{k_{\mathrm{HH}} k_{\mathrm{DD}}} \tag{3}
\end{equation*}
$$

Both sides of eq 2 and 3 are equal if the concentrations of R_{H} and R_{D} are proportional to each other, ${ }^{9}$ for instance for stationary radical concentrations. In view of the low conversion (Table I) $\mathrm{R}_{\mathrm{H}} \sim \mathrm{R}_{\mathrm{D}}$ can be safely assumed for the peroxide system. Thus the observed value $\left[\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{D}}\right]^{2} /\left[\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{H}}\right]$ [$\left.R_{D}-R_{D}\right]=3.97$ should be close to the true value of $k_{\mathrm{HD}^{2}}$] $k_{\mathrm{HH}} k_{\mathrm{DD}} .{ }^{10}$

For the photoreduction systems the ratios $\left[R_{H}-R_{D}\right]^{2} /$ $\left[\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{H}}\right]\left[\mathrm{R}_{\mathrm{D}}-\mathrm{R}_{\mathrm{D}}\right]$ ar considerably larger than 3.97 (Table I). Because of eq 3 this must mean that the excess yield of [$\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{D}}$] is not formed in radical reactions describable by usual kinetic rate laws. Since in these systems R_{H} and R_{D} are generated simultaneously we conclude that the excess $\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{D}}$ is due to combination in primary geminate radical pairs and reflects a cage effect.
The multiplicity of the primary pairs follows from a triplet quenching experiment: Acetonitrile solutions of acetone- d_{6} (1 M) and 2-propanol (10 M) containing cis-1,3-pentadiene (Q) were exposed as described above. For $[\mathrm{Q}]=0.12 \mathrm{M}$ not even traces of $R_{H}-R_{H}$ and $R_{D}-R_{D}$ were formed, yet $R_{H}-R_{D}$ was obtained with a yield of $(1,44 \pm 0,15) \times 10^{-3} \mathrm{M}$. Within the error limits this yield was found unquenchable also for higher quencher concentrations ${ }^{12}\left(0.12 \leq[\mathrm{Q}] \leq 1.4 \mathrm{M}, k_{\mathrm{q}} \tau\right.$ $\left.=(0.04 \pm 0.04) \mathrm{M}^{-1}\right)$, and this proves that it must be formed
in a photoreduction from the singlet S_{1} state. ${ }^{13}$ Further we note that the unquenchable fraction of $\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{D}}$ is practically equal to the excess fraction found in the absence of quencher (Table I). This shows that primary pairs derived from the T_{1} photoreduction do not lead to effective cage product formation.

The quantum yield of pinacol formation ϕ_{P} was determined for solutions of 0.1 M acetone in 2-propanol and 0.1 M acetone plus $1,0 \mathrm{M} 2$-propanol in acetonitrile. Both systems gave $\phi_{\mathbf{P}}$ $=0.105 \pm 0.005$ at $25^{\circ} \mathrm{C}$ and $300 \mathrm{~nm} .{ }^{15}$ If we accept this value for the systems of Table I then the fractions of excess $R_{H}-R_{D}$ correspond to quantum yields of pinacol formation in S_{1} cage reactions of $\phi_{\mathrm{P}} \mathrm{SC}=0.0048$ (acetone system) and $\phi_{\mathrm{P}} \mathrm{SC}=$ 0,0063 (acetone- d_{6} system), respectively ($\pm 10 \%$). Further, knowledge of ϕ_{P} and the ratio of disproportionation to combination of the radicals $\left(7.8 \pm 1.5^{16}\right)$ leads to a quantum yield for acetone photoreduction to radicals, $\phi_{\mathrm{R}}=0.92 \pm 0.19$. From these results ranges for the rate constant $k_{\mathrm{q}}{ }^{\mathrm{S}}$ of acetone S_{1} quenching by 2-propanol I and for the efficiency (probability) $P_{\text {rad }}$ of radical pair formation during this process may be estimated. We assume that quenching and intersystem crossing (k^{ST}) are the only reactions available to $\mathrm{S}_{\text {I }}$ and have

$$
\begin{equation*}
\phi_{\mathrm{P}}^{\mathrm{SC}}=\frac{k_{\mathrm{q}}^{\mathrm{S}}[\mathrm{I}]}{k_{\mathrm{q}}^{\mathrm{S}}[\mathrm{I}]+k^{\mathrm{ST}}} P_{\mathrm{rad}} P_{\mathrm{cage}} P_{\mathrm{com}} \tag{4}
\end{equation*}
$$

where in addition to the previously defined quantities $P_{\text {cage }}$ is the probability that the radicals react in the cage rather than diffuse apart and $P_{\text {com }}$ is the probability that the radicals couple rather than disproportionate. We further assume that acetone T_{1} is completely reduced to radicals, from which

$$
\begin{equation*}
\phi_{\mathrm{R}}=1-\frac{k_{\mathrm{q}}^{\mathrm{S}}[\mathrm{I}]}{k_{\mathrm{q}}^{\mathrm{S}}[\mathrm{I}]+k^{\mathrm{ST}}}\left(1-P_{\mathrm{rad}}\right) \tag{5}
\end{equation*}
$$

follows. For the evaluation of $P_{\text {rad }}$ from eq 4 and 5 we take $0.0045 \leq \phi_{\mathrm{P}} \mathrm{SC} \leq 0.0065,0.73 \leq \phi_{\mathrm{R}} \leq 1.00$, and $0.10 \leq P_{\text {com }}$ ≤ 0.14 as reasonable ranges from the experimental data, and adopt $0.5 \leq P_{\text {cage }} \leq 1.0$ as usual for S_{\mid}pair reactions. ${ }^{17}$ This gives $0.107 \leq P_{\mathrm{rad}} \leq 1$, i.e,, an efficiency range of 10 to 100% for the S_{1} reaction. With the known rate constant for intersystem crossing ${ }^{18} k^{\mathrm{ST}}=5 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and the above range for $P_{\text {rad }}$ the rate constant for quenching then becomes $2.8 \times$ $10^{7} \geq k_{\mathrm{q}}^{\mathrm{S}} \geq 2.4 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, low values for P_{rad} corresponding to high values for $k_{\mathrm{q}} \mathrm{S}$ and vice versa.

Our lower limit for $k_{\mathrm{q}} \mathrm{S}$ agrees with the rate constant for the quenching of adamantanone fluorescence by 2-propanol ${ }^{3}$ (1.9 $\times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$) and is similar to the rate constant for photoreduction of acetone T_{1} by 2 -propanol ${ }^{14}\left(1 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$. This indicates that the reactivities and efficiencies of acetone S_{1} and T_{1} may be roughly equal. More generally, acetone S_{1} either has a reactivity towards 2-propanol which is similar to that of acetone T_{1} and leads to radicals with unit efficiency or it reacts with a higher rate constant but less efficiently. These results differ from those obtained by Wagner ${ }^{4}$ for the acetone/tributylstannane system, and we cannot offer an explanation for this difference.

Acknowledgment. We thank Professor K. Grob, EMPA, Dübendorf, for his generous gift of the GLC column, Mrs. I. Verhoolen for the GLC experiments, and Dr. N. Neuner-Jehle, Givaudan-Esrolko, Dübendorf, for the GLC/MS result. We also appreciate helpful advice on the analysis by Professor P. J. Wagner, East Lansing.

References and Notes

(1) L. Salem, J. Am. Chem. Soc., 96, 3486 (1974); L. Salem, C. Leforestier, G. Segal, and R. Wetmore, ibid., 97, 479 (1975).
(2) J. Michl, Mol. Photochem., 4, 257 (1972); Top. Current Chem., 46, 1 (1974).
(3) D. R. Charney, J. C. Dalton, R. R. Hautala, J. J. Snyder, and N. J. Turro, J. Am. Chem. Soc., 96, 1407 (1974).
(4) P. J. Wagner, J. Am. Chem. Soc., 89, 2503 (1967); Tetrahedron Lett., 5385 (1968).
(5) P. J. Wagner, Top. Current Chem., 66, 1 (1976).
(6) (a) G. P. Laroff and H. Fischer, He/v. Chim. Acta, 56, 2011 (1973); (b) B. Blank, A. Henne, G. P. Laroff, and H. Fischer, Pure Appl. Chem., 41, 475 (1975); (c) A. Henne and H. Fischer, Helv. Chim. Acta, 58, 1598 (1975); (d) A. Henne, Ph.D. Thesis, University of Zürich, 1976.
(7) B. Blank, A. Henne, and H. Fischer, Helv. Chim. Acta, 57, 920 (1974).
(8) A $30-\mathrm{m}$ Ucon LB glas capillary column, fid detection system. n-Dodecane solution added after exposure to serve as internal standard.
(9) Schwarz inequality, see H. Margenau and G. M. Murphy "The Mathematics of Physics and Chemistry'", 2d ed, van Nostrand, Princeton, N.J., 1956, p 134.
(10) The common and well-established assumption ${ }^{11} k_{H D}=2\left(k_{\mathrm{HH}} k_{\mathrm{DD}}\right)^{1 / 2}$ gives $k_{\mathrm{HO}}{ }^{2} / k_{\mathrm{HH}} k_{\mathrm{DO}}=4$. Within the experimental error this is found for the peroxide system.
(11) J. F. Kerr and A. F. Trotman-Dickenson, Prog. React. Kinet., 1, 129 (1961).
(12) GLC/MS examination of the solution after irradiation in the presence of 0.74 M cis-1,3-pentadiene confirmed the identity of $\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{D}}$.
(13) The dominant mechanisms ${ }^{14}$ for the decay of acetone T_{1} are quenching by [Q], for which we assume $k_{Q}{ }^{\top}=5 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, and photoreduction by 2-propanol ${ }^{3.14}$ with $k_{\mathrm{q}}{ }^{\top}=1 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. At 10 M 2 -propanol $[\mathrm{Q}]=$ 1.4 M results in a 700 -fold decrease of the photoreduction yield as compared to the unquenched reaction. Yet the yield of unquenchable $R_{H}-R_{D}$ is only a factor 20 lower than the sum of pinacol yields in the unquenched reaction. For $[\mathrm{Q}]=0.12 \mathrm{M}$ some chemical quenching ${ }^{3}$ of the radicals by cis-1,3-pentadiene must be invoked to explain the complete lack of $\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{H}}$ and $R_{0}-R_{0}$.
(14) G. Porter, S. K. Dogra, R. O. Loutty, S. E. Sugamori, and R. W. Yip, J. Chem. Soc., Faraday Trans. 1, 1462 (1973).
(15) The quantum yield for acetone disappearance in 2-propanol at 265 nm is $0.079 .^{14}$
(16) A previous analysis ${ }^{60}$ of the product yields in the acetone- $d_{6} / 2$-propanol system gave $k_{d} / k_{c}=4.4 \pm 0.5$. This value is too low since photoreduction of the disproportionation products was not taken into account. ${ }^{6 \mathrm{~d}}$
(17) R. M. Noyes, J. Chem. Phys., 22, 1349 (1954); J. Am. Chem. Soc., 78, 5486 (1965).
(18) A. M. Halpern and W. R. Ware, J. Chem. Phys., 54, 1271 (1971); J. C. Dalton and J. J. Snyder, J. Am. Chem. Soc., 97, 5192 (1975).

Andreas Henne, Hanns Fischer*
 Physikalisch-Chemisches Institut der Universität
 CH-8001 Zürich, Switzerland
 Received May 10, 1976

Isolation and Identification of Cross-Linked Nucleosides from Nitrous Acid Treated Deoxyribonucleic Acid

Sir:
Treatment of DNA with nitrous acid covalently cross-links the two strands of the double helix. ${ }^{1,2}$ This reaction leads to inactivation ${ }^{3}$ and perhaps to deletion mutations ${ }^{4}$ in bacteriophage. The chemical structure of the cross-links has not been determined, although this knowledge is needed in the study of DNA repair processes. ${ }^{5}$ A recent suggestion that the cross-links arise from the reaction of aldehyde groups, liberated by depurination, with amino groups on the opposite chain ${ }^{6}$ has now been withdrawn. ${ }^{3}$ We have approached this problem directly, by isolating cross-linked nucleosides from nitrous acid treated DNA. We wish to propose I and tentatively, II, as the structures of two such products.

Calf thymus DNA (500 mg) was treated with $1 \mathrm{M} \mathrm{NaNO}_{2}$ at pH 4.2 and $25^{\circ} \mathrm{C}$ for 24 h . At the end of this time, the product ($T_{\mathrm{m}} 75^{\circ} \mathrm{C}$) had at least one cross-link per molecule,

I

II
a, $\mathrm{R}=2$-deoxy- β-D-ribofuranosyl 5 '-phosphate b, $\mathrm{R}=2$-deoxy- β-D-ribofuranosyl
even after sonication, as measured by the ultraviolet assay for reversible denaturation. ${ }^{1,2}$ The product was freed of salt by dialysis, and hydrolyzed with deoxyribonuclease I and snake venom phosphodiesterase. The mixture was fractionated by DEAE-Sephadex chromatography using a LiCl gradient in the presence of 7 M urea. ${ }^{7}$ Mononucleotides were eluted, followed by dXMP, and then a series of small peaks containing the cross-linked dinucleotide Ia, and oligonucleotides resulting from inhibition of enzymatic hydrolysis of the modified DNA. Each of these latter peaks was desalted, ${ }^{8}$ treated with alkaline phosphatase, and subjected to Sephadex G-25 chromatography, in water. This procedure converted Ia (Ve/Vo 1.0) to Ib (Ve/Vo 1.9). The mobility of the oligonucleotide peaks (Ve/ Vo 1.0) was not altered substantially by this treatment, as they retained internal phosphates.

Compound Ib (yield $12.5 \mathrm{~A}_{290}$ units) was homogeneous in an anion exchange high pressure liquid chromatography system, and had the following properties: $\lambda_{\max }(\mathrm{nm}) 260,300(\mathrm{pH}$ 2.5), 292 (pH 7.0), 250, 260, $290(\mathrm{pH} 13) ; \mathrm{p} K_{\mathrm{a}}$ values, 5.6 and 10.8, the NMR (in $\mathrm{D}_{2} \mathrm{O}$, Fourier transform) showed an aromatic proton ($\delta 8.1$) and a set of peaks due to deoxyribose ${ }^{9}$ in a $1: 1$ ratio. The compound resisted reduction by sodium dithionite, which excluded the presence of nitro, nitroso, azo, azoxy, or diazoamino functions. The $\mathrm{p} K_{\mathrm{a}}$ of Ib was shifted from 5.6 to 7.8 in the presence of glyoxal, ${ }^{10}$ which suggested the presence of the adjacent $\mathrm{N}-1$ and amino functions of guanine,

After trimethylsilylation ${ }^{11}$ the mass spectrum ${ }^{12}$ of Ib showed a molecular weight of 1021 , which from comparison with the trimethylsilyl $-d_{9}$ derivative ${ }^{13}(\mathrm{M}=1075)$ gave a molecular weight of free Ib of 571 . Measurement of exact mass (1021.4426, found) supported $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{9} \mathrm{O}_{8}\left(\mathrm{SiMe}_{3}\right)_{7}$ (1021.4436, calcd), corresponding to two deoxyguanosine molecules minus NH_{3}. The principal fragmentation pathway showed sequential loss of each sugar moiety with hydrogen rearrangement to give $m / e 761$ and 501 , which are analogous to common nucleoside reactions ${ }^{14}$ and militate against a sugar-sugar linkage. N,O-Permethylation $\left(\mathrm{CD}_{3}\right)^{15}$ produced a similar mass spectrum ($M=618$) in which the base-base linkage was maintained in the principal fragment ions, as required for the proposed structure. Treatment of Ib with $\mathrm{D}_{2} \mathrm{O}$ for 1 h at $80^{\circ} \mathrm{C}$ resulted in 2 amu shifts for all base-containing ions, in accord with two unsubstituted C-8 moieties.

Structure Ib is consistent with the properties and origin of the compound, as well as the known thermal and base stability of the cross-links induced by nitrous acid in DNA. ${ }^{16}$ To confirm its origin, we allowed 500 mg of dGMP to react with nitrous acid under the conditions used for DNA, and isolated 8.2 A $_{290}$ units of Ia, after a DEAE-Sephadex workup. A possible mechanism for the formation of I involves diazotization of a guanine amino group, and attack at the position by a second

